Matura Informatyka Maj 2019 Zadanie 4 - programowanie0:00 Przeczytanie poleceń, odczyt danych z pliku1:33 Zadanie 4.15:50 Zadanie 4.210:29 Zadanie 4.3
http://matfiz24.plDziałania na pierwiastkach na maturze 2018 z matematyki. Zadanie dość przystępne nawet jak na poziom podstawowy.
Matura Informatyka Maj 2020 Zadanie 4 - programowanie , cześć 10:00 - 3:44 Odczyt danych, odczyt poleceń3:45 - 10:02 Zadanie 4.1
Save Save Andrzej Kiełbasa - Matura z matematyki - część 2.p For Later. 100% 100% found this document useful, Mark this document as useful.
Odpowiedź Wyjaśnienie Zadanie 3. (1pkt) Dane są liczby a = 3, 6 ⋅ 10 − 12 oraz b = 2, 4 ⋅ 10 − 20. Wtedy iloraz a b jest równy: A. 8, 64 ⋅ 10 − 32 B. 1, 5 ⋅ 10 − 8 C. 1, 5 ⋅ 108 D. 8, 64 ⋅ 1032 Odpowiedź Wyjaśnienie Zadanie 4. (1pkt) Cena roweru po obniżce o 15% była równa 850 zł. Przed obniżką ten rower kosztował: A. 865, 00 zł B. 850, 15 zł
Zadanie znajduje się na stronie nr 2. Link do arkusza:https://www.cke.edu.pl/images/_EGZAMIN_MATURALNY_OD_2015/Arkusze_egzaminacyjne/2014/informatyka_PP_2_A1
Patronite https://patronite.pl/paniewelinaInstagram https://www.instagram.com/paniewelinaigFacebook https://www.facebook.com/paniewelinafbW tym odcinku
6D02q3. Podstawowa matura z matematyki – Maj 2018 CKE Zadanie 1. (0-1) Liczba 2loga36-log34 jest równa A. 4 B. 2 C. 2log32 D. log38 Zobacz na stronie Zobacz na YouTube Zadanie 2. (0-1) Liczba \(\sqrt[3]{\frac{7}{3}}\cdot \sqrt[3]{\frac{81}{56}}\) jest równa A. \(\frac{\sqrt{3}}{2}\) B. \(\frac{3}{2\sqrt[3]{21}}\) C. \(\frac{3}{2}\) D. \(\frac{9}{4}\) Zobacz na stronie Zobacz na YouTube Zadanie 3. (0-1) Dane są liczby a=3,6⋅10−12 oraz b=2,4⋅10−20. Wtedy iloraz \(\frac{a}{b}\) jest równy A. 8,64⋅10−32 B. 1,5⋅10−8 C. 1,5⋅108 D. 8,64⋅1032 Zobacz na stronie Zobacz na YouTube Zadanie 4. (0-1) Cena roweru po obniżce o 15% była równa 850 zł. Przed obniżką ten rower kosztował A. 865,00 zł B. 850,15 zł C. 1000,00 zł D. 977,50 zł Zobacz na stronie Zobacz na YouTube Zadanie 5. (0-1) Zbiorem wszystkich rozwiązań nierówności \(\frac{1-2x}{2}>\frac{1}{3}\) jest przedział A. \(\left( -\infty ,\frac{1}{6} \right)\) B. \(\left( -\infty ,\frac{2}{3} \right)\) C. \(\left( \frac{1}{6},+\infty \right)\) D. \(\left( \frac{2}{3},+\infty \right)\) Zobacz na stronie Zobacz na YouTube Zadanie 6. (0-1) Funkcja kwadratowa jest określona wzorem f(x)=-2(x+3)(x-5). Liczby x1, x2 są różnymi miejscami zerowymi funkcji f. Zatem A. x1 + x2 = −8 B. x1 + x2 = −2 C. x1 + x2 = 2 D. x1 + x2 = 8 Zobacz na stronie Zobacz na YouTube Zadanie 7. (0-1) Równanie \(\frac{{{x}^{2}}+2x}{{{x}^{2}}-4}=0\) A. ma trzy rozwiązania: x = − 2 , x = 0 , x = 2 B. ma dwa rozwiązania: x = 0 , x = − 2 C. ma dwa rozwiązania: x = − 2 , x = 2 D. ma jedno rozwiązanie: x = 0 Zobacz na stronie Zobacz na YouTube Zadanie 8. (0-1) Funkcja liniowa f określona jest wzorem \(f\left( x \right)=\frac{1}{3}x-1\) , dla wszystkich liczb rzeczywistych x. Wskaż zdanie prawdziwe. A. Funkcja f jest malejąca i jej wykres przecina oś Oy w punkcie \(P=\left( 0,\frac{1}{3} \right)\) B. Funkcja f jest malejąca i jej wykres przecina oś Oy w punkcie \(P=\left( 0,-1 \right)\) C. Funkcja f jest rosnąca i jej wykres przecina oś Oy w punkcie \(P=\left( 0,\frac{1}{3} \right)\) D. Funkcja f jest rosnąca i jej wykres przecina oś Oy w punkcie \(P=\left( 0,-1 \right)\) Zobacz na stronie Zobacz na YouTube Zadanie 9. (0-1) Wykresem funkcji kwadratowej f(x)=x2−6x−3 jest parabola, której wierzchołkiem jest punkt o współrzędnych A. (−6, −3) B. (−6, 69) C. (3, −12) D. (6, −3) Zobacz na stronie Zobacz na YouTube Zadanie 10. (0-1) Liczba 1 jest miejscem zerowym funkcji liniowej f(x)=ax+b , a punkt M=(3,−2) należy do wykresu tej funkcji. Współczynnik a we wzorze tej funkcji jest równy A. 1 B. \(\frac{3}{2}\) C. \(-\frac{3}{2}\) D. -1 Zobacz na stronie Zobacz na YouTube Zadanie 11. (0-1) Dany jest ciąg (an) określony wzorem \({{a}_{n}}=\frac{5-2n}{6}\) dla n≥1. Ciąg ten jest A. arytmetyczny i jego różnica jest równa \(r=-\frac{1}{3}\) B. arytmetyczny i jego różnica jest równa r = −2 C. geometryczny i jego iloraz jest równy \(r=-\frac{1}{3}\) D. geometryczny i jego iloraz jest równy \(r=\frac{5}{6}\) Zobacz na stronie Zobacz na YouTube Zadanie 12. (0-1) Dla ciągu arytmetycznego (an), określonego dla n≥1, jest spełniony warunek a4+a5+a6=12. Wtedy A. a5=4 B. a5=3 C. a5=6 D. a5=5 Zobacz na stronie Zobacz na YouTube Zadanie 13. (0-1) Dany jest ciąg geometryczny (an) , określony dla n≥1, w którym \({{a}_{1}}=\sqrt{2}\) ,\({{a}_{2}}=2\sqrt{2}\) , \({{a}_{3}}=4\sqrt{2}\). Wzór na n-ty wyraz tego ciągu ma postać A. \({{a}_{n}}={{\left( \sqrt{2} \right)}^{2}}\) B. \({{a}_{n}}=\frac{{{2}^{n}}}{\sqrt{2}}\) C. \({{a}_{n}}={{\left( \frac{\sqrt{2}}{2} \right)}^{n}}\) D. \({{a}_{n}}=\frac{{{\left( \sqrt{2} \right)}^{n}}}{2}\) Zobacz na stronie Zobacz na YouTube Zadanie 14. (0-1) Przyprostokątna LM trójkąta prostokątnego KLM ma długość 3, a przeciwprostokątna KL ma długość 8 (zobacz rysunek). Wtedy miara α kąta ostrego LKM tego trójkąta spełnia warunek A. 27° b. Kąt KLM ma miarę 60°. Długość ramienia LM tego trapezu jest równa A. a − b B. 2(a − b) C. \(a+\frac{1}{2}b\) D. \(\frac{a+b}{2}\) Treść dostępna po opłaceniu abonamentu. Zadanie 18. (0-1) Punkt K=(2,2) jest wierzchołkiem trójkąta równoramiennego KLM, w którym |KM|=|LM|. Odcinek MN jest wysokością trójkąta i N=(4,3) . Zatem A. L = (5, 3) B. L = (6, 4) C. L = (3, 5) D. L = (4, 6) Treść dostępna po opłaceniu abonamentu. Zadanie 19. (0-1) Proste o równaniach y=(m+2)x+3 oraz y=(2m−1)x−3 są równoległe, gdy A. m = 2 B. m = 3 C. m = 0 D. m =1 Treść dostępna po opłaceniu abonamentu. Zadanie 20. (0-1) Podstawą ostrosłupa jest kwadrat KLMN o boku długości 4. Wysokością tego ostrosłupa jest krawędź NS, a jej długość też jest równa 4 (zobacz rysunek). Kąt α , jaki tworzą krawędzie KS i MS, spełnia warunek A. α = 45° B. 45° 60° D. α = 60° Treść dostępna po opłaceniu abonamentu. Zadanie 21. (0-1) Podstawą graniastosłupa prostego jest prostokąt o bokach długości 3 i 4. Kąt α , jaki przekątna tego graniastosłupa tworzy z jego podstawą, jest równy 45° (zobacz rysunek). Wysokość graniastosłupa jest równa A. 5 B. \(3\sqrt{2}\) C. \(5\sqrt{2}\) D. \(\frac{5\sqrt{3}}{3}\) Treść dostępna po opłaceniu abonamentu. Zadanie 22. (0-1) Na rysunku przedstawiono bryłę zbudowaną z walca i półkuli. Wysokość walca jest równa r i jest taka sama jak promień półkuli oraz taka sama jak promień podstawy walca. Objętość tej bryły jest równa A. \(\frac{5}{3}\pi {{r}^{3}}\) B. \(\frac{4}{3}\pi {{r}^{3}}\) C. \(\frac{2}{3}\pi {{r}^{3}}\) D. \(\frac{1}{3}\pi {{r}^{3}}\) Treść dostępna po opłaceniu abonamentu. Zadanie 23. (0-1) W zestawie \(\underbrace{2,2,2,…,2,}_{m\,\quad liczb}\underbrace{4,4,4,…,4,}_{m\quad liczb}\) jest 2m liczb (m≥1) , w tym m liczb 2 i m liczb 4. Odchylenie standardowe tego zestawu liczb jest równe A. 2 B. 1 C. \(\frac{1}{\sqrt{2}}\) D. \(\sqrt{2}\) Treść dostępna po opłaceniu abonamentu. Zadanie 24. (0-1) Ile jest wszystkich liczb naturalnych czterocyfrowych mniejszych od 2018 i podzielnych przez 5? A. 402 B. 403 C. 203 D. 204 Treść dostępna po opłaceniu abonamentu. Zadanie 25. (0-1) W pudełku jest 50 kuponów, wśród których jest 15 kuponów przegrywających, a pozostałe kupony są wygrywające. Z tego pudełka w sposób losowy wyciągamy jeden kupon. Prawdopodobieństwo zdarzenia polegającego na tym, że wyciągniemy kupon wygrywający, jest równe A. \(\frac{15}{35}\) B. \(\frac{1}{50}\) C. \(\frac{15}{50}\) D. \(\frac{35}{50}\) Treść dostępna po opłaceniu abonamentu. Zadanie 26. (0-1) Rozwiąż nierówność 2x2-3x>5 Treść dostępna po opłaceniu abonamentu. Zadanie 27. (0-1) Rozwiąż równanie (x3+125)(x2−64)=0. Treść dostępna po opłaceniu abonamentu. Zadanie 28. (0-1) Udowodnij, że dla dowolnych liczb dodatnich a, b prawdziwa jest nierówność \(\frac{1}{2a}+\frac{1}{2b}\ge \frac{2}{a+b}\) Treść dostępna po opłaceniu abonamentu. Zadanie 29. (0-1) Okręgi o środkach odpowiednio A i B są styczne zewnętrznie i każdy z nich jest styczny do obu ramion danego kąta prostego (zobacz rysunek). Promień okręgu o środku A jest równy 2. Uzasadnij, że promień okręgu o środku B jest mniejszy od \(\sqrt{2}-1\). Treść dostępna po opłaceniu abonamentu. Zadanie 30. (0-1) Do wykresu funkcji wykładniczej, określonej dla każdej liczby rzeczywistej x wzorem f(x)=ax (gdzie a>0 i a≠1), należy punkt P=(2,9). Oblicz a i zapisz zbiór wartości funkcji g, określonej wzorem g(x)=f(x)−2. Treść dostępna po opłaceniu abonamentu. Zadanie 31. (0-1) Dwunasty wyraz ciągu arytmetycznego (an), określonego dla n≥1, jest równy 30, a suma jego dwunastu początkowych wyrazów jest równa 162. Oblicz pierwszy wyraz tego ciągu. Treść dostępna po opłaceniu abonamentu. Zadanie 32. (0-1) W układzie współrzędnych punkty A=(4,3) i B=(10,5) są wierzchołkami trójkąta ABC. Wierzchołek C leży na prostej o równaniu y=2x+3. Oblicz współrzędne punktu C, dla którego kąt ABC jest prosty. Treść dostępna po opłaceniu abonamentu. Zadanie 33. (0-1) Dane są dwa zbiory: A ={100, 200, 300, 400, 500, 600, 700} i B ={10,11,12,13,14,15,16}. Z każdego z nich losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że suma wylosowanych liczb będzie podzielna przez 3. Obliczone prawdopodobieństwo zapisz w postaci nieskracalnego ułamka zwykłego. Treść dostępna po opłaceniu abonamentu. Zadanie 34. (0-1) Dany jest graniastosłup prawidłowy trójkątny (zobacz rysunek). Pole powierzchni całkowitej tego graniastosłupa jest równe \(45\sqrt{3}\). Pole podstawy graniastosłupa jest równe polu jednej ściany bocznej. Oblicz objętość tego graniastosłupa. Treść dostępna po opłaceniu abonamentu. Bądź na bieżąco z
5 maja, 2022 20 czerwca, 2022 Zadanie 4 (0-1) Cena działki po kolejnych dwóch obniżkach, za każdym razem o 10% w odniesieniu do ceny obowiązującej w danym momencie, jest równa 78 732 zł. Cena tej działki przed obiema obniżkami była, w zaokrągleniu do 1 zł, równa A. 98 732 zł B. 97 200 zł C. 95 266 zł D. 94 478 zł Źródło CKE - Arkusz egzaminacyjny 2021/2022 - Matura maj ( poziom podstawowy Analiza: Skorzystajmy z proporcji, gdzie 90% to cena po obniżkach, a 100% cena po pierwszej obniżce. 90% - 78732 100%- x Teraz cena po pierwszej obniżce to 90% ceny bazowej: 90% - 87480 100%- x Odpowiedź: A. 98 732 zł B. 97 200 zł C. 95 266 zł D. 94 478 zł Matura - poziom podstawowy Egzaminy maturalne - archiwum 2017 Zadania z matury podstawowej z matematyki 2016 są obecnie wprowadzane na stronę. W niedługim czasie udostępnione zostaną odpowiedzi i analizy zadań. Zadanie z odpowiedzią bez analizy Zadanie z analizą i odpowiedzią Matura 2018 - poziom podstawowy Matura 2022 - poziom podstawowy 2022 Zadanie z odpowiedzią bez analizy Zadanie z analizą i odpowiedzią Matura 2020 - poziom podstawowy Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią Matura 2019 - poziom podstawowy Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią Matura 2021 - poziom podstawowy Maj 2021 Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią
10 maja, 2018 25 lipca, 2019 Zadanie 4 (0-1) Cena roweru po obniżce o 15% była równa 850 zł. Przed obniżką ten rower kosztował A. 865,00 zł B. 850,15 zł C. 1000,00 zł D. 977,50 zł Źródło CKE - Arkusz egzaminacyjny 2017/2018 - Matura maj poziom podstawowy Analiza: Oznaczmy jako x cenę przed obniżką. Jeżeli od ceny odejmiemy 15% ceny początkowej to otrzymamy cenę po obniżce. Zapiszmy to wykorzystując "matematyczny bełkot" 🙂 Zamieńmy procenty na ułamek dziesiętny: Odpowiedź: A. 865,00 zł B. 850,15 zł C. 1000,00 zł D. 977,50 zł Procenty Egzaminy maturalne - archiwum 2017 Zadania z matury podstawowej z matematyki 2016 są obecnie wprowadzane na stronę. W niedługim czasie udostępnione zostaną odpowiedzi i analizy zadań. Zadanie z odpowiedzią bez analizy Zadanie z analizą i odpowiedzią Matura 2018 - poziom podstawowy Matura 2019 - poziom podstawowy Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią Tematyczny arkusz maturalny - procenty Arkusz zadań maturalnych. Temat przewodni - PROCENTY